NUMERICAL SOLUTION OF A THREE-DIMENSIONAL
STEFAN PROBLEM

Kh, M. Geiman and L. I. Rubinshtein UDC 517.9:536.2

A niethod is described, and the results are presented for the solution of the problem of directed
crystallization of an ingot. A three~dimensional model of the process is examined.

The process of directed crystallization of an ingot, whose model can be represented schematically
as follows, is considered.

Within a cylindrical radiator of radius R (muffle resistance furnace), a homogeneous ingot moves
forward at the constant velocity v. The ingot is a half-cylinder of radius r whose axis coincides with the
muffle axis (see Fig. 1). Some stationary temperature distribution T,(x), characterizing the process, is
given on the muffle. In our case

Tover ... x<<0,
To(x) ={ Byerthx . . . 0<x<ay,
T(‘wer-}-ka ... x>,

where Tgyer 18 Some overheating temperature. Such a temperature distribution on the muffle is charac-
teristic for the directed crystallization process. The melted ingot crystallizes as it advances into the cold
part. Such a problem was examined in [1] in a two-dimensional treatment, i.e., when axial symmetry is
present. Here, as is seen from the sketch, the three-dimensional problem is considered. In such a for-
mulation, a detailed investigation for different materials and different furnace modes is associated with an
extremely high expenditure of machine time. Hence, the main idea herein is to study the influence of the
given ingot shape on the shape of the isothermal surface T = Tgyy 20d the temperature field in the ingot.
The stabilized (quasistationary) state of the ingot is of main interest here.*

Let (o, @, z) be a cylindrical coordinate system connected with the moving ingot, and t the time.
It follows from Lambert's law that the flux density at some point M on the XZ plane of the ingot which ar-
rives from the muffle surface is

@ kg
J, = e*g, f dg j T4(0) 5"5—“%’53 Rd. (1)
g
—a 0 :
It can be shown that
Feosa’cosp .~ | F sing(R—p cos)
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* A state which is stationary in a moving coordinate system connected with the ingot is quasistationary.
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If M is on the cylinder p = r, then the flux per unit surface of the ingot at the point M is

P2

J = e%a, f ng‘ R f THO 7 Q) de. &

w0

1
P —®

Here
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(R—r? + PR+ +21 | v TR—7F T CIR 7 1 G

R

Furthermore, let us note that the theoretical model of the process is based on the following as-
sumptions:

1) the heat in the ingot is propagated only by heat conductiont;
2) the melting and crystallization of the materials occur at the constant temperature T = Tgyrs

3) we neglect the influence of the ingot surface temperature on the given temperature distribution
T, (x) on the muffle.

Let D denote the domain
D={0<p<r;, —a<g<0; —oo<<z< oo},

and I' the boundary of this domain. Then, under the assumptions made the ingot temperature T is de-
scribed by the following conditions:

1 8 7/ 7/ 1 4 T g / or oT ,
pap(()pap)er*a(()aqa)az(()az)”’at !
© 9 26D, >0, T+Ty
—A(D) T = e0,T*|. — ee*c, P, 1)
on r
(5) 61 ;)Erv t—>01
OF,
ay i + (A (T)grad T, grad Fy) = 0, (39)

® 9. 9€D, T>0, T=Ty,

Here

“T):{L,::const - T<Tyy
Ay=const . .. T>Tg,

it follows from (1) and (2) that the boundary condition (31‘) given on the whole surface I is equivalent
to the conditions

oo

= co, 4| —ex*, j GIGIHEE

]
. (33)

p=r

0

Y=zt {—a<g<0, —oo<z<<oo}, >0,

t Convection, whose influence is taken into account by the introduction of an effective coefficient of heat
conduction, takes part in heat transfer in the liquid phase.
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Fig. 1. Schematic model of directed crystalli-
zation of an ingot. 1) Radiator; 2) ingof.

serving the symmetry condition

oT

1 or
—A T)?—"—:‘— :—‘80T4_ — ge*g,
( b 0 oo o lwzo 0
y g TH(®) fa (E — D dE, (39
x=z4+0oh {0<p<r, —oo<z< oo}, (>0, 3
lim T<<oo, ¢
Zrto

where X = z + vt is the coordinate connected to the fixed
mutifle.

_Let us note that condition (3) is not posed on the
edge p =r, @ =0 since the normal direction is not de-
fined on this edge.

Since the domain D is symmetric relative to the
plane ¢ =—7/2, half of it can be considered by con-

=0... {0<p<r, —oo<z< oo}, [>0. (35)
dp G =
2
Let us introduce the dimensionless variables
b XM = 1 T—Ty
e I S (i Y R iy
where T, is the initial ingot temperature and
l | w<<0,
(i E S
g 2
Let us assume
o= | EOFE—NLL
D)= | Te@fE—0d
_ oy 8=, = Tour (4)
hx T:suf_ T1
Ao B DT g #%0
7"1 A'1 (7;1,1:'- Tl)
Ay = &1 (Tsu— _T_l)i - ee*oor '
M M (Ty— T
b—=- % ———
c(Tsur“ . Tl) 7‘1 (Tsui"' Tl)
Then (31)-(33) is written as .
d = k(@) 22 g () -
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O<<p=<< |, —-g—<q><0, —0 <L 2 < 00 }, t>0, w0,
90 Atk @)w - 81— BD (),
p=1
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Xz o, {—-%<¢<0, <z |, £>0, (5,)

_ ) L A R@w < 8 — By, (1),

3 oy (33)
r=ztof, 0<p<l, —oo<z<o}, >0,

—33— -0, (5,)
P g
i B O -+ (lgrad w], grad F,) = 0,
ot ox
(55)
@<p<n -2 <g<0, mm<m<m} w=0, t>0.
Here

2 2 2

PN ST JPN S B

0o? Op p?  0¢* Ix?

The problem (5) is solved below by using the method of Kamenomostskaya and Oleinik. In conformity
with [2], (54) is written as

_ Ga@) daw) 6
Aw a M Tar ®

where

j ky (B) dE w<Z 0,
0

w

{
a(w)-—:i
i S By (B)dE--b w>0.

5

The Stefan condition (5;) written thus turns out to be faken into account automatically since a 6-func-
tion appears in the differentiation in (6). Furthermore, following Oleinik [3], a(w) is smoothed, which
permits treatment of (6) as an ordinary quasilinear equation with continuous coefficients. In our case we
can take as a(w) ’

a(w) = w, w<—L,
a(w) = i‘ w--b, w>»lL

Here a(w) "is smoothed” in the interval —L < w < L by some polynomial. Experience shows that it is
sufficient to take a third degree polynomial. The coefficients of this polynomial are foundfrom the zerothand
first~order conjugate conditions. Then

Fol w < —L
) A
oy (@ — LY + o, (w — L) + =L lw] <L
a@) = o (o) = | T D (7
‘ _}"L w2 L,
1,
where
) 3

S -

413 2L Ay L

493



Therefore, (5;) becomes

o = ) S - pa ) 2
x 8y)

{0<p<1, ——~g—<q><0, ~oo<z<oo}, >0,

Since we are interested in the influence of the absence of cylindrical symmetry, let us pose the problem
for deviations of the solution of the three-dimensional problem from a similar problem in the case of an
ingot of cylindrical shape. The selection of such an approach is explained by the fact that it can a priori be
expected that the solution of the problem in the three-dimensional formulation will differ slightly from the
corresponding solution of the two-dimensional problem, and hence, the error of the computation method

in solving the problem in the two- or three-dimensional formulation separately may turn out to bhe of the
same order of magnitude as the deviations themselves. Furthermore, let us note that the conditions which
the dimensionless temperature u satisfies in the case of cylindrical symmetry agree with the conditions
(51), (59), (55) and the conditions (55), (5,) are replaced by the conditions

@l _,
a(p P==0
{0<p<l]l, —0<<z<C o}, >0, (9
Ou =0.
O =

2

This problem was solved by one of the implicit numerical methods also by using the method of
Kamenomostskaya and Oleinik [1]. Hence, the equation

du du
Au = et —_— (10)
u == (1) % + pee (1) i
is analogous to (8;). Let us put
v(x, 0, @ D=wx, p, @, H—ulx, o, ¢, 1) (11 -
Then
o Ou 0(u+v) du au dv
o () o o (1) o o (u - v) o —Ob(u)_—ét— = [a (1 —{—v)-a(u)]—(a?+a(tt+v)~a—t~.
Subtracting the corresponding equations of the three- and two-dimensional problems, we find that the
perturbation v(x, p, ¢, t) satisfies the following conditions:
v 1 oo 1 o% v du
T T g e o el
ta@+n) L ple@to) —a@ L+ page o 22, (12,)
ot ox dx
[0<P< 1, ———-23—<cp<0, —-oo<x<oo}, >0,
av 4 4
—| =—A{lk+o)(+0)+ 8 — k(@) u + 614,
p==1
12,)
{——~’2‘— <9<, ——oo<x<oo}, >0,
L (4 + ) (1 +0) + 831 — By, ' (12,)
a¢ P==0
9 —0, {0<p<l, —o<x<oo}, >0, (12y)
dp e _%t_
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Here u is considered known. Namely, let us take the quasistationary solution of the two~dimensional prob-
lem* as u. The problem (12,)-(12,) was solved by a mesh method. A finite ingot hence replaced the infinite
ingot. The condition of zero flux is imposed at the left end of the ingot in both the two- and the three-dimen-~
sional case so that

G (125)

0x

= (.

=L begin

The temperature at the right endpoint was determined from the condition (5,), where it was considered that

o)
ou :0,..0<p<1;_‘3ﬂ sO...0<p<1,~—“2‘<(P<O-
dp "=Lbegin dp x:Lbegin
Whence
= Q. (12.)
v"”:l“'begin 0 6

Let us take the zero deviation of the three~dimensional from the two-dimensional solution
Ul =0 (12y)

as the initial state for the deviations v(x, p, ¢, t). A classical explicit difference scheme [4] was used to
construct the difference analog of the problem (12). The solution at internal points on the (k + 1)-th level
is found by this scheme from the known solution at the internal and boundary points of the k-th time level,
Then, by using the solution just found at the internal points and the boundary conditions (12;) (i =2, 3, 4,

5, 6), the value of the solution is found at the boundary points of the (k + 1)-th level, All the nonlinear coef-
ficients were "linearized" in such a way that the main terms were taken on the (k + 1)~th level, and the
rest were referred to the previous time level.

In constructing the difference analog of the problem (12), the domain

J
D, _{0<p<1, —-?<fp<0, Lbegin<x< Lend}

is divided by several planes in ¢, andeachplane is divided by a rectangular mesh, The solution at the mesh
nodes will be

R
U""I -*-U(X,, \Oiy (pj! tk)y

where
= Lt St (=L
o, = in, [=1,...,n,
14
jm— 40, ji=1, ..., m
Py 3 - ! n
t, = kT, k=12, ...,

if hg, n, 6, T are the spacings inx, p, ¢, t, respectively. Here nonuniform spacings are chosen in x, where
the shallowest spacings are selected at places of the greatest change in the desired function. The spacings
hg and hg 14 are inserted around the point Xg.

The computation was performed in a B}éSM—4 digital computer. Selected for the computation were m
=5, n=7, where p =53, § =—n/8, n =1/6, minhg =r/3, where hg was increased as the endpoints of the
ingot approached. The time spacing depends considerably on the "spreading® interval of the Stefan heat.
Thus, if it were successful to calculate with min7 = 0.002 for I = L = 0.125, then for I = L = 0.0025 with the
spacing minT = 0.0005.

The spacing T was varied for the selected !, L, during the computation. Namely, 7 could be increased

as the time t itself increased. . The problem (12) was also calculated with a finer mesh: m =5, n = 13, p =81,

* Let us recall that the main problem is to determine the quasistationary temperature distribution.
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where in the case of the coarser mesh 7 the spacing in p was doubled, and the mesh was unloaded in x so
that the least spacing was retained in the expected region of the melting isotherm, A comparison between
results of 2 computation with a mesh of 5 X 7 X 53 =1855 nodes and 5 x 13 x 81 = 5265 nodes showed that
the maximum relative error is from 1% to 10% for deviations of from 102 to 10-7 in absolute magnitude

as the mesh spreads. The mentioned comparison permitted at least a ninefold increase in the time spacing 7
which will naturally lead to a diminution in the expended machine time. Thus, if the optimal spacing is

T =0.0002 for 2 81 x 13 x 5 mesh, then it is successful to compute witha T = 0,002.

Let us note that in both the first and second case no egress has been made to the external memory.
The final problem (12) was solved with a mesh of 5 X 7 x 53 nodes. About 10 sec of machine time was ex-~
pended at each time level. Naturally, the time of egress to the quasistationary depends on the initial ap-
proximation. This is precisely why the quasistationary solution of the two-dimensional problem is taken
as the initial state. In this case the time needed for the solution of the problem (12) to become quasi-
stationary, does not reflect the true time needed to build up the process.

Computations were carried out for two modifications of the parameters of GaAs. The following
thermophysical characteristics were used:
v=6.6.16"° mpmec; c¢==431.24 J/kg- deg; v == 5310 kg/m®;
o = 6.07-10° I/kg; o, = 5.65-107 W/m* deg; Ty, = 1513°K;
0.2 ... . T<Ty,

T, =300°K; &=
' {0.6 Ce e T>Thg
Modification I:

;= 13:146 W/m. deg % =05, =L =0.125; R=0.02m;

3

r=00075M; L =0.735M; £k=—>500 deg/m; &*=0.97,

(1530 .. — o< x<0.855,
. (x)__{l—l.29293x2 +296.465x — 83811 . . . 0855< x< 009,
? | £ (s —90) -+ 1530 .. 09<x <155

| 888 ... LB5<x< oo,

Modification II:

A — 12.56 W/m. deg; _ii - 0.3947368; = L -=0.0025 R = 0.035M;

2

Fr=0015M; L =—033M £k=—200deg/m; &%= [
1520 — o0 << x <0,
To(X) =
1520 -+ £x O <Cx << oo.

1t is seen from an analysis of the temperature fields calculated in solving the two-dimensional axi-
symmetric problem [1] for modification I that the maximum change of the quantity u(p, z) in p does not
exceed 104, Let us here recall that u has been normalized to 1. Consequently, in place of the two-di-
mensional solution u(p, z, t), the average of u with respect to p can be inserted in the numerical solution
of the problem (12):

,
u= %5 pu(p, z, H)dp. (13)
&

Then u is determined by the conditions

d - du = - - ~ [ ou o
= ( A —d’zf-> — 20 () {A [k (1) 4 -+ 8)* — BD(r2)} = o (1) ‘ —5 e _a_z") .. [begin< z<Lgyg t>0, (14y)
_Ou_ -0, >0, (14,)
0z “Lpegin
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TABLE 1. Coordinates of the Isothermal Surface in the
Case k = —500 deg/ m

[
o 7 n 3z o
0 % ~T F p
0 91,907 91,907 91,907 91,907 91,907
0,125 91,907 91,915 91,920 91,923 91,923
0,25 91,906 91,921 91,931 91,935 91,935
0,375 91,902 91,926 91,937 91,941 91,941
0,5 91,898 91,929 91,941 91,944 91,944
0,625 91,893 91,930 91,942 91,945 91,945

TABLE 2. Coordinates of the Isothermal Surface in the
Case k =200 deg/ m

[
o 3 two~-dimen=~
0 —% —% ——8“— ——;‘— sional
isotherm
0 9,098 ' 9,098 9,098 9,098 9,098 9,31
0,25 9,092 9,125 9,137 9,14 ! 9,14 9,31
0,5 9,053 9,11 9,119 9,12 9,12 9,3
0,75 9,001 9,068 9,075 9,075 9,075 9,26
1,0 8,1 9,005 9,01 9,01 9,01 9,02
1,25 7,599 ’ 8,402 8,432 8,432 8,432 8,43
— 1 {»4 o B : 14
u e — DL, ) —6}, {>0, (145)
“hegin (1) ‘/ A end
° ! {4 '/F(/ 6} L L t=0 (14
= e e D (rz) — z = 0.
Ve begin - end ?

The A, B, ®(rz) entering here are the same as above. Taking u(p, z, t) = u(z, t) in this modification

in the numerical solution of the problem (12),.we simplify the program considerably and diminish the com-
putation time.

It is impossible to carry out the computations of modification II thus since it is characterized by the
fact that a significant dependence of the solution on p is obtained in the two-dimensional case. Hence, the
solution of the two-dimensional problem is taken as u in the solution of the problem (12). The computation
is carried out until 2 monotonic diminution is achieved:

A = max ot —ofy |

Compliance with the criterion

A<C107=0.01°K

is considered the criterion for the solution to become quasistationary.

The computation was carried out to t = 27.6 sec for modification I, and to t = 24.8 sec for modifi-
cation II,

The temperature field of the three-dimensional problem and its deviation from the two-dimensional
field at the mesh nodes as well as the x coordinate of the isothermal surface T = Tgyr are printed out.
The values of x(p, ¢) (in cm) are presented in Tables 1 and 2 for modifications I and II, respectively.

Coordinates of the melting isotherm for the axisymmetric problem are given for comparison in the
right-hand column of Table 2.

Let us note that the maximum displacement (to the left) of the coordinates of the three-dimensionsl
isotherm in the second modification as compared with the two-dimensional isotherm is ~8 mm and in the
first modification is ~4 mm.

An analysis of the field of deviations of the three-dimensional from the two-dimensional solution in
the modification I yields a maximum deviation of =2.8-107% ~ 3,3°K at the right end of the ingot, and
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~10-% = 0.1°K in the area of the isotherm. For the second modification, the maximum deviations are on
both sides of the domain of the isotherm T = Tgy, and equal ~10-3 ~ 1°K.

Therefore, the computations conducted showed that it is possible to limit oneself to an examination

of the axisymmetric problem for the investigation of the directional crystallization process in modes en-
countered in practice.

«
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NOTATION

is the Stefan—Boltzmann constant;

is the reduced radiation factor of the muffle;

is the relative radiativity of the ingot material;

is the density;

is the specific latent heat of crystallization;

is the temperature;

is the distance between a point M and an arbitrary point N on the muffle;
is the acute angle between the direction MN and the Y axis;

is the acute angle between the direction MN and the radius r;

is the acute angle between the direction MN and the radius R of the muffle;
is the normal direction to the surface T';

is the equation of the isothermal surface T = Tgyy.
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